

Sampling distribution

Sample mean $\bar{x} \sim N$

Sample proportion $\hat{P} \sim N$

$$\bar{x} = \frac{\sum x_i}{n} \xrightarrow[\text{theorem}]{\text{Central limit}} N(n\mu_x, \sqrt{n}\sigma_x)$$

$$\bar{x} \sim N(\mu_x, \frac{\sigma_x}{\sqrt{n}})$$

$$\hat{p} = \frac{\sum x_i}{N} \quad \downarrow \quad x_i \sim \text{Bernoulli distribution}$$

$$\sum x_i \sim \text{Binomial}(N, p)$$

$$Np \geq 10, N(1-p) \geq 10 \quad \downarrow$$

↑
Population
proportion

$$\sum x_i \sim N(Np, \sqrt{Np(1-p)})$$

$$\hat{p} \sim N(p, \sqrt{\frac{p(1-p)}{N}})$$

$$\bar{X} \sim N(\mu_x, \frac{\sigma_x^2}{n}) \Leftarrow$$

assumption. 1) SRS. \Rightarrow unbiased $\Rightarrow \mu_{\bar{X}} = E(\bar{X}) = \mu_x$

$\Rightarrow n > 30$ or $X \sim \text{Normal}$

2.1) how to check is $\bar{X} \sim \text{Normal}$

2.1.1) sample has no skewness

or no outlier. \Rightarrow population is normal

2.1.2) Q-Q plot of sample is all
on a straight line.

3) $n < 0.1 N \Rightarrow$ independent sampling

$$\sigma_{\bar{x}} = \frac{\sigma_x}{\sqrt{n}}$$

$$\Rightarrow \text{Var}(\bar{x}) = \text{Var}\left(\frac{\sum x_i}{n}\right)$$

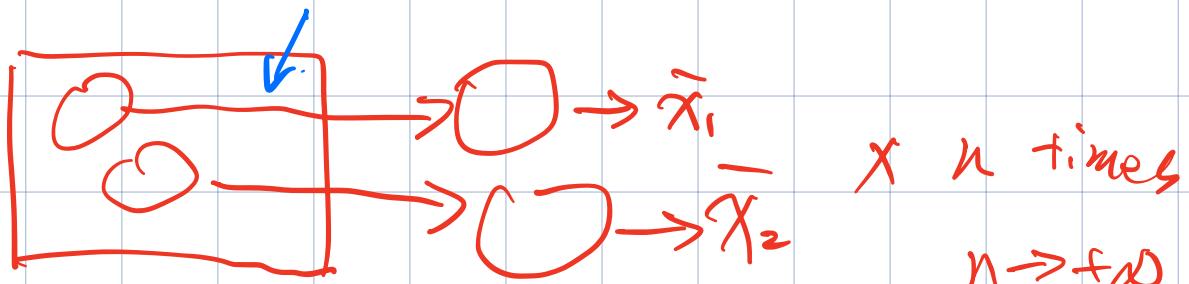
$$= \frac{1}{n^2} \text{Var}(x_1 + x_2 + \dots + x_n)$$

independent $\Rightarrow = \frac{1}{n^2} [\text{Var}(x_1) + \text{Var}(x_2) + \dots + \text{Var}(x_n)]$

$$= \frac{1}{n^2} \times n \text{Var}(X)$$

$$= \frac{\text{Var}(X)}{n}$$

$$\sigma_{\bar{x}} = \sqrt{\frac{\text{Var}(X)}{n}} = \frac{\sigma_x}{\sqrt{n}}$$



the distribution
of

多个样本的分布

Sampling distribution

每个可能的
的平均身高

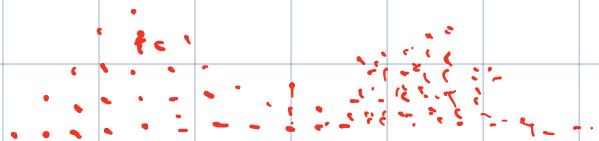
分布

一个样本内数
据的分布

Sample distribution

一个班身高
分布

一个学校
的身高分布



Population distribution

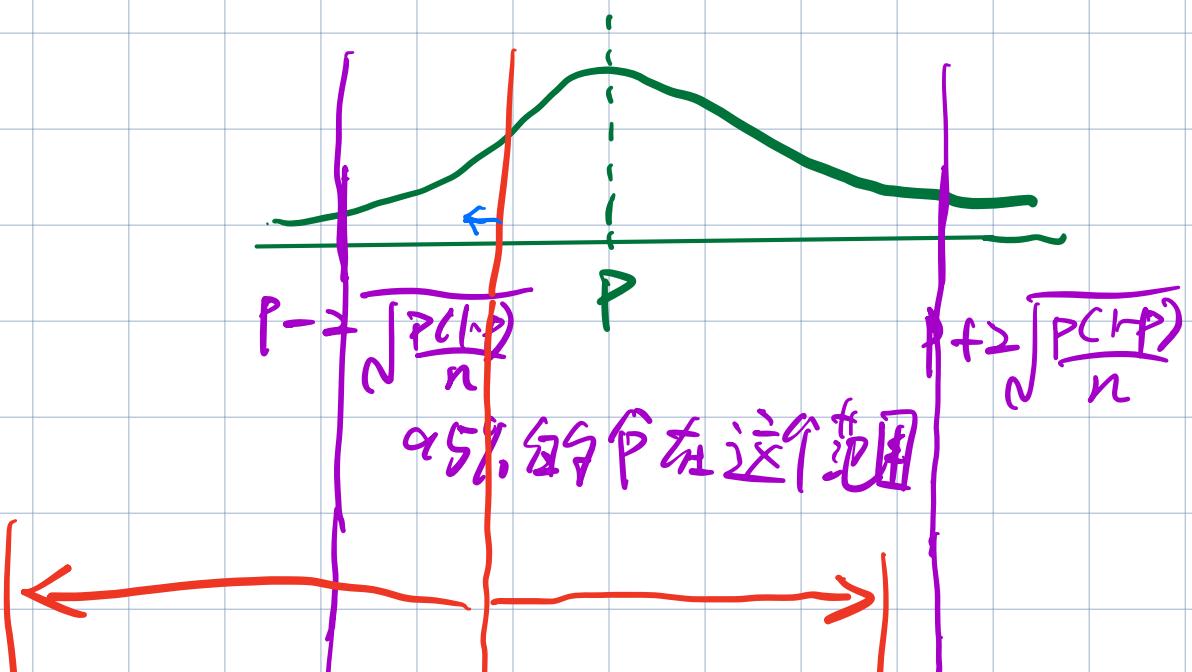
3 conditions $\Rightarrow \bar{X} \sim N(\mu_x, \frac{\sigma_x}{\sqrt{n}})$

another 3 conditions $\Rightarrow P \sim N(P, \sqrt{\frac{P(1-P)}{n}})$

已知 $n=50$, $\hat{P}=0.47$, 求 P 大致范围.

population proportion \Rightarrow 未知数.

当符合 3 条件时. $\hat{P} \sim N(P, \sqrt{\frac{P(1-P)}{n}})$



95% 的情况下 P 在这个范围

$$\hat{P} - 2\sqrt{\frac{\hat{P}(1-\hat{P})}{n}}$$

0.27

$$\hat{P}$$

$$\hat{P} + 2\sqrt{\frac{\hat{P}(1-\hat{P})}{n}}$$

0.67

$$0.67 + 0.64 = 1.31 \Rightarrow 31\%$$

$$\sqrt{\frac{\hat{P}(1-\hat{P})}{n}} < 3\%$$

$$\frac{1.96 \sqrt{\hat{P}(1-\hat{P})}}{0.03} < \sqrt{n}$$

$$\sqrt{n} > \frac{2 \sqrt{\hat{P}(1-\hat{P})}}{0.03}$$

$$n > \frac{2^2}{0.03^2} \hat{P}(1-\hat{P})$$

$$n > \frac{2^2}{0.05^2} \cdot 0.5^2.$$

$$n > 111$$

置信区间

confidence interval.

C.I.

置信度

confidence level.

C-level

误差幅度.

Margin of Error

M.O.E.

临界值

Critical Value

C.V.

标准误.

Standard Error

S.E.

CI: Sample statistics \pm MOE.

CI: Statistics \pm C.V. \times S.E.

!!! 置信度不是概率.

4-Step process.

State.

1) 声明要做什么.

2) 声明细节.

3) 声明使用符号指代变量.

Plan

1) 声明使用方法

2) 该方法欲用条件.

Do

1) 用计算器计算.

2) 写清结果.

Conclude

做结论,汇报结果

State (1)
for P (2)
at C-level = 95%.
Where P is the true proportion of
female students in all students in
our school. (3)

Plan 1-sample z -interval for P .

只抽了一个样.
只给一个 pop. param. 的形态.
做估计.
Sampling distri
 z 代表正态分布.

要估计的
Population
parameter.

如果是 for $P_1 - P_2$ 则是 2-sample
两个 proportion 之差.

Do. 手算 (J. 公式):

Statistics \pm Critical Value \times Standard Error

$$\hat{P} \pm \text{invNorm} \left(\text{area: } \frac{1 + \text{level}}{2} \right) \frac{\sqrt{\hat{P}(1-\hat{P})}}{n}$$

用 $1 - \text{level}$ 算出
 level
 $\text{area: } \frac{1 + \text{level}}{2}$
 $\mu = 0$
 $\sigma = 1$

$$0.47 \pm 1.96 \cdot \sqrt{\frac{0.47 \times 0.53}{50}}$$

D. 用计算器算.

By using calculator

-PropZint

$X: 23$
 $n: 50$
 $\alpha\text{-level: } 0.95$

We get $(0.345, 0.618)$.

Conclude 汇报结果.

We are 95% confident that the true proportion of female student among all students in our school is between 0.345 and 0.618.

Confidence interval done.

Hypothesis testing.

假设检验.

当别人说一个 claim. 你想证明他
对 or 错.

1) 假设 claim 已经成立.

2) 取样. 算 ~~概率~~
P-value

3) 若 p-value 极小.
说明不该抽到样本

4) 说明原假设错误

① 定假设.

① 你看到别人的 claim

e.g. $P > 0.7$ or $P = 0.7$

② 你同意? 不同意?

你想证 $P > 0.7$

你想证 $P < 0.7$

$H_A: P > 0.7$ 备则假设

$H_A: P < 0.7$

将 $>$, $<$ 或 \neq 改为 $=$,

$H_0: P = 0.7$ 原假设 $H_0: P = 0.7$

通过推翻原假设
来证明备则假设

通过[原假设成立时,
抽到了极小根概率样本. 但不应该
抽到极小根概率样本]

故原假设不成立】

最佳番羽原假设

⇒ 原假设已成立.

$$P = 0.7$$

$$\Rightarrow \hat{P} \sim N(0.7, \sqrt{\frac{0.7 \times 0.3}{50}})$$

$$\hat{P} = 0.47$$

$$\hat{P} < 0.47$$

$$P\text{-value} = P(\hat{P} \leq 0.47) = \text{normulcdf} \left(\begin{array}{l} \text{lower} = 0 \\ \text{upper} = 0.47 \\ \mu = 0.7 \\ \sigma = \sqrt{\frac{0.7 \times 0.3}{50}} \end{array} \right)$$

≈ 0

P-Value $< 0.05 \Rightarrow$ 拒绝原假设.
 $\Rightarrow H_A$ 成立. $P < 0.7$

①定假设. ②验条件 ③算P-值 ④出结论

①假设是什么.

State :

- ②使用的数学符号代表什么变量.
- ③用的 α -level

Plan :

- ①写明使用的方法.

1-sample z-test for P

②验条件.

1) SRS

2) $10\% < n < 10\% N$

3) $np \geq 10$ $n(1-p) \geq 10$

这里是大样本.

Do. 1) 用計算器
by using calculator
1-propZ test

$P_0: 0.7$
 $\pi: 23$
 $n: 50$
 $\text{prop: } < R$

We get P-value = 0.000120.

Z-statistics ≈ -3.70

Conclude: Because our p-value (≈ 0) is less than α -level (0.05). We do have convincing evidence that I the true proportion of female student among all students in our school is less than 0.7 I

α -level: 自己設定的標準. 小於 α 則拒絕 H_0