

X is a random variable
with any distribution.

Central limit theorem

The sum of X (many many independent and identically distributed X) will become normal as the number of X goes larger.

rule of thumb: when $n \geq 30$ the sum of X is already close to normal.
→ 记

Sampling distribution: distribution of \bar{x} , \hat{p}

sample mean
sample proportion

For \bar{x} sample mean.

- 1) assume sample size $n \geq 30$
- 2) assume sample size $n < 0.1N$

Because $n < 0.1N$. we have independent sampling.

Because $n \geq 30$ we can use C.L.T.

$$Y = X_1 + \dots + X_n \sim N \text{ Because of C.L.T.}$$

$$\bar{X} = \frac{Y}{n} \sim N \quad E(\bar{X}) = E\left(\frac{Y}{n}\right)$$

$$= \frac{1}{n} E(Y)$$

Sample mean is normal

$$= \frac{1}{n} \cdot n E(X)$$

because of CLT.

individual's distribution
is unknown in
shape.

$E(\bar{X}) = E(X)$

population
center
of
distribution

Sample mean's
center of distribution

$$\begin{aligned}
 \text{Std}(\bar{X}) &= \text{Std}\left(\frac{Y}{n}\right) = \frac{1}{\sqrt{n}} \text{Std}(Y) \\
 &= \frac{1}{\sqrt{n}} \cdot \sqrt{n} \text{Std}(X) \\
 &= \frac{\text{Std}(X)}{\sqrt{n}}
 \end{aligned}$$

当 population 为 正态 时. X_1, \dots, X_n 天然为正态.

$Y = X_1 + \dots + X_n$ 也为 正态. 无论 $n \geq 30$.
 $\bar{X} = \frac{Y}{n} \sim N$.

如何可知 population 为正态

① Sample 无 skewness, 无 outlier | 参考.

② use Q-Q plot. | 很少差.

不差. | ③. Shapiro-Wilk & Kolmogorov-Smirnov.

PBL 用.

For sample proportion. \hat{p}

$\hat{p} = \frac{Y}{n}$. Y is Binomial distribution
sum of Bernoulli distribution

已知 $n > 10$ 且 $n(1-p) > 10$ 时.

$$Y \sim \text{Binom}(np) \Rightarrow Y \sim \text{Normal}(np, \sqrt{np(1-p)})$$

$$\hat{p} \sim \text{Normal}.$$

$$\frac{1}{n} \sum_{i=1}^n \mathbb{E}(Y_i) = \frac{1}{n} \sum_{i=1}^n \mathbb{E}(X_i) = \frac{1}{n} \sum_{i=1}^n \mathbb{E}(1) = \frac{1}{n} \sum_{i=1}^n 1 = \frac{1}{n} n = 1$$

Mean of Sample proportion

↑
population proportion
 prob.

$$Std(\hat{P}) = Std\left(\frac{Y}{n}\right) = \frac{1}{n} Std(Y)$$

$$= \frac{1}{n} \overbrace{npC(-p)}$$

$$= \sqrt{\frac{P(1-P)}{n}}$$

$n \uparrow \Rightarrow \text{std}(\hat{p}) \downarrow$